1st year mathematics full book paper - MDCATustad

A collection of mdcat, ecat, f.sc, ics and matric examination all subjects MCQs and past papers chapter wise.

Post Top Ad

Monday, May 4, 2020

1st year mathematics full book paper


Intermediate (class-XI) Objective (Complete Book) 

Q.No.1:- Each question has four possible answers .select the correct answer and encircles it.

1.              i 6 is equal to
            (a) –1                           (b)                              (c) 1                    (d) –
2.              The set of odd integers between “2” and ‘4” is
            (a) Proper set                (b) Infinite set               (c)Empty set        (d) Singleton set
3.              An operation which act on a single number yields an other number is called
            (a) Binary operation      (b) Unary operation       (c) Trinary operation.   (d) Arithmetic operation
4.              A system of linear equation is said to be consistent if it has
(a) No solution              (b) Unique solution       (c) Infinite solution            (d) (b), (c)
5.              Which one of the following property of matrices is not possible in general?
(a) Distributivity           (b) commutativity          (c) Associativity            (d) none of these
6.              If f (x) is divided by x-a s.t g(x) is Quotient and R is the remainder, then the division algorithm is
            (a) g(x)=(x-a) f(x)+R     (b) f(x)=(x-a) R+g(x)     (c) f(x) = (x-a)g(x) +R    (d) g(x) = (x-a) R +f(x)
7.              If the roots of the Quadratic equation x2+2x+c=0 are equal then value of c is
            (a) 1                             (b) 2                             (c) 3                    (d) 4

9.              If a,bÃŽR, a ¹ b and G is –ve G.M then
            (a) A < G< H                (b) A < G < H               (c) A > G > H      (d) A > G > H
10.           IF P(A) = P(B) then events A and B are
            (a) Dependent events     (b) Independent event    (c) Impossible events     (d) Compound event
11.           For two mutually exclusive events A and B:
            (a) A È B = f               (b) A  Ç B =  f             (c)A ÈB = AÇB   (d) A=B
12.  Sum of exponents of “a” and “x’ in each term in expansion of (a+x)n is equal to
(a) n+1                         (b) n–1                         (c) n                             (d) 1
13.  In expansion of (a+x)n ; coefficients from the beginning and end are
(a) always equal            (b) always not equal      (c) may be equal            (d) may not be equal
14.  n2>n+3 for all integral values of
(a) n £ 3                       (b) n ³  3                      (c) n £ 2                       (d) n ³  2
15.  Two rays with common starting point form
            (a) An Angle                 (b) an arc                      (c) Curve             (d) Sector

17.           cos(2p+θ)=
(a) –cosθ                      (b) cosθ                                    (c) –sinθ                        (d) sinθ

19.           If a,b,c are the sides of a triangle and s the semi-perimeter then  the value of a+b-c=
(a) s – c                                    (b) 2s–2c                      (c) s –2c                        (d) 2s–c 
 (Section-1)

Q.No.2:- Write short answers of following questions. (any twenty five)                   25 x 2 = 50

 

1)                         Factorize 3x2+3y2
2)                         Find the multiplicative inverse of –3i
4)                         Define overlapping sets.
5)                         Why Z is not a group w.r.t ‘´
6)                         Define principal diagonal and secondary diagonal.
7)                         Evaluate 
8)                         If the matrices A and B are symmetric and AB=BA show that AB is symmetric.
9)                         Find the inverse of 
10)                      If A is non singular matrix then show that (A-1)-1=A
11)                      Evaluate 
12)                      Use factor theorem to determine the first polynomial is a factor of the second polynomial  or not
13)                      When  is divided by x-2, the remainder is 1.find the value of k.
14)                      Prove that sum of all the four fourth roots of unity is zero.
15)                      Find the G.M between –2i and 8i.
16)                      Find the interval in which the series is convergent 
17)                      Find the 9th term of harmonic sequence 
18)                      Find the value of n when 
19)                      The governor of the Punjab calls a meeting of 12 officers. In how many ways can they be seated at a round table?
20)                      Evaluate 
21)                      Determine the probability of getting 2 heads in two successive tosses of a balanced coin.
22)                      State Binomial theorem
23)                      Calculate by means of binomial theorem (0.97)3.
24)                      Use Binomial theorem to find the value of (.98)1/2 up to three places of decimal.
25)                      State principle of mathematical induction.
26)                      Find x, if 
27)                      Prove , state also the domain of  q
28)                      Without using the tables, Find the values of tan15o, cot15o
29)                      Show that 
30)                      Prove that 
31)                      Find the period of 3 sin x
32)                      Find the period of sec9x
33)                      When the angle between the ground and the sun is 30o flag pool casts a shadow of 40m long find the height of the top of flag.
34)                      If a = 53, b=88o 36¢,  g = 31o 54¢ find the value of b.
35)                      Prove that 
36)                      Solve the equation 
37)                      Solve the equation



No comments:

Post a Comment

Post Top Ad